

Algorithm AS 140: Clustering the Nodes of a Directed Graph
Author(s): Gary W. Oehler
Source: Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 28, No. 2
(1979), pp. 206-214
Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2346750
Accessed: 26-06-2016 02:03 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted

digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about

JSTOR, please contact support@jstor.org.

Royal Statistical Society, Wiley are collaborating with JSTOR to digitize, preserve and extend access to
Journal of the Royal Statistical Society. Series C (Applied Statistics)

This content downloaded from 178.250.250.21 on Sun, 26 Jun 2016 02:03:40 UTC
All use subject to http://about.jstor.org/terms

This content downloaded from 178.250.250.21 on Sun, 26 Jun 2016 02:03:40 UTC
All use subject to http://about.jstor.org/terms

 STATISTICAL ALGORITHMS 207

 DESCRIPTION AND PURPOSE

 The nodes of a directed graph are to be partitioned into clusters so that for any ordered
 pair of clusters, the nodes of the first cluster are nearly all linked to the nodes of the second
 cluster, or nearly all not linked. In this way, a summary is made of the linkages of the graph.
 Busacker and Saaty (1965) has a discussion of directed graphs and a variety of their applica-
 tions.

 The criterion chosen to evaluate the partition is the likelihood function. Consider the
 Nx N association matrix B of the N nodes of the graph. If there are NCLUS clusters, then B
 may be thought of as being partitioned into NCLUSx NCLUS cells corresponding to the
 partition of the nodes; cell (a, b), for clusters a and b, has S(a, b) links and Z(a, b) entries.
 Assume that each binary entry of B is an independent Bernoulli trial with Pr{B(I,J) = 1}
 equal to P(a, b), where node I is in cluster a and node J is in cluster b. Then the maximum
 likelihood estimate of P(a, b) is

 P(a, b) = S(a, b)/Z(a, b),

 and the overall likelihood is equal to

 II P(a, b)s(a,b?(1 -P(a, b))(Z(ab) -s(a,b))
 14a,b<NCLUS

 (The diagonal elements of B are not used in the likelihood calculations.) Hartigan (1975)
 suggests the use of maximum likelihood in non-hierarchical clustering; the related Shannon-
 Wiener information measure (or approximations to it) has been used for quite some time in
 hierarchical clustering. See Williams and Lambert (1959) and MacNaughton-Smith (1965).

 The algorithm is a "transfer" algorithm; an initial partition is produced by subroutine
 INIT, and subroutine ALLOC transfers each node in turn to the cluster for which the overali
 likelihood is maximized. Swaps of pairs of nodes between clusters, as in Banfield and Bassill
 (1977), are not considered. This algorithm further differs from standard transfer algorithms
 (for example, Banfield and Bassill) by selecting more judiciously the transfers to be tested, by
 handling the simultaneous clustering of the rows and columns of the association matrix, and by
 handling large sparse linkage matrices in list form.

 METHOD

 The association matrix B is not used in its Nx N form, but in the form of a vector X. The
 first N elements of X are a directory, and the remaining elements are the links in the graph.
 The numbers of the nodes to which node I is linked are stored in X beginning at location X(I).
 Entries in X must be packed to the left so that the last node to which node I is linked is
 immediately followed in X by the list of nodes for node I+ 1.

 Subroutine INIT constructs an initial partition of the nodes. If ITYPE = 0, the partition
 is constructed by approximating the first eigenvector of B (using eight iterations of the power
 method) and sorting the nodes so that their components in the eigenvector are in ascending
 order. The sorted nodes are then split into NCLUS initial clusters. If ITYPE = 1, a user
 supplied initial partition, specified in CLUS, is used.

 Subroutine ALLOC transfers a node from one cluster to another if the move increases the
 log likelihood by more than TH, and if the second cluster is smaller than MXSIZE, a given
 maximum size for clusters. ALLOC makes global passes, in which all transfers are checked,
 and local passes, in which transfers between clusters that did not change in the previous pass
 are not checked. A local pass follows any pass in which a transfer was executed; a global pass
 follows a local pass which had no transfers. ALLOC begins with a global pass and continues
 until there is a global pass with no transfers, at which time a local optimum has been reached.
 This technique reduces computation by ignoring unlikely transfers except when testing for a
 local optimum. On return, the output structures of ALLOC contain the final partition in

This content downloaded from 178.250.250.21 on Sun, 26 Jun 2016 02:03:40 UTC
All use subject to http://about.jstor.org/terms

 208 APPLIED STATISTICS

 CLUS, the size of each cluster in SIZE, the matrix of success counts in P and the overall log

 likelihood in R1(l).

 STRUCTURE

 SUBROUTINE INIT(X, N, XLEN, NCL US, MXCL US, MXSIZE, ITYPE, CLUS, Y, SIZE,
 P, ZOLD, INEW, IFA ULT)

 Formal parameters

 X Integer array (XLEN) input: data vector
 N Integer input: number of nodes
 XLEN Integer input: length of X
 NCLUS Integer input: number of clusters requested
 MXCLUS Integer input: maximum number of clusters
 MXSIZE Integer input: maximum size of a cluster
 ITYPE Integer input: type of initialization
 CLUS Integer array (N) input/

 output: initial cluster of each node
 Y Integer array (XLEN) output: data vector (by columns of B)
 SIZE Integer array (MXCLUS) output: initial size of each cluster
 P Real array (MXCLUS, MXCLUS) output: initial matrix of success counts
 IOLD Integer array (N) workspace:
 INEW Integer array (N) workspace:
 IFA ULT Integer output: fault indicator

 Fault indicator

 IFAULT= 0 no fault
 1 NCLUS outside its range
 2 MXSIZE * NCLUS K N
 3 error in X directory: X(i) < X(i- 1), some i < N; X(1)# N+ 1; or X(N) > XLEN
 4 reference in X to node number < 1 or > N
 5 same link listed twice in X
 6 all-zero column of the association matrix B
 7 illegal cluster specified in initialization
 8 initial cluster violates size restrictions

 SUBROUTINE ALLOC(X, Y, N, XLEN, NCLUS, MXCLUS, MXSIZE, TH, MXS2, CLUS,
 SIZE, P, RI, R2, TLOG, IOLD, INEW)

 Formal parameters

 These are the same as for INIT except
 Y Integer array (XLEN) input: data vector (by columns of B)
 TH Real input: threshold of incremental likeli-

 hood
 MXS2 Integer input: equal to MXSIZE squared
 CLUS Integer array (N) input/

 output: current cluster of each node
 SIZE Integer array (MXCLUS) input/

 output: current size of each cluster
 P Real array (MXCL US, MXCLUS) input/

 output: current matrix of success
 counts

This content downloaded from 178.250.250.21 on Sun, 26 Jun 2016 02:03:40 UTC
All use subject to http://about.jstor.org/terms

 STATISTICAL ALGORITHMS 209

 RI Real array (MXCL US) workspace/
 output: RI(1) returns the overall log

 likelihood
 R2 Real array (MXCLUS) workspace:

 TLOG Real array (MXS2) workspace:

 AUXILIARY ALGORITHMS

 ALLOC calls the real function XLIKE(PI, RI, SI, S2, S3, S4, Y1, TLOG, MXS2), which
 is included. XLIKE calculates the change in log likelihood between P1 successes in SI * S2
 trials and P1 - Y1 *R1 successes in S3 * S4 trials.

 RESTRICTIONS

 1. 1 < NCLUSS MXCLUS; NCLUS< N.
 2. NCLUS * MXSIZE> N.
 3. The X vector must be such that every row and column of the association matrix B has a

 non-zero element. The easiest way to assure this is to set the diagonal elements of B equal to 1;
 this will not affect the clusters. Faults of types 3 and 6 can indicate an all-zero row or column
 of B.

 4. No link may be listed twice in X.
 5. The algorithm does not accept missing values; that is, the information in X is taken to be

 a complete description of the linkages of the graph.
 6. Cluster sizes must be greater than zero and less than MXSIZE.

 ACCURACY

 The final partition produced is a local optimum and may not be a global optimum. Also,
 there may be other partitions which result in the same log likelihood. Use of several initial
 partitions will reduce the risk of selecting a poor local optimum.

 The accuracy of the change in log likelihood and overall log likelihood calculations depends
 on the accuracy of the real arithmetic on the particular computer in use. Each change in log
 likelihood calculation requires 20* NCLUS real additions, and the overall log likelihood
 calculation requires 3 * NCL US2 real additions.

 STORAGE AND TIME

 The variable storage requirement for this algorithm is less than 2XLEN+ 3N+
 3MXCL US + MXCL US2 + MXSIZE2+ 100 words.

 The amount of time required for convergence depends on N, XLEN, NCLUS and the
 configuration of the graph itself, but computation is roughly proportional to N* NCLUS2.
 A sample graph of 71 nodes and 243 links executed in 20-6 sec for 15 clusters on an IBM
 370/158.

 ACKNOWLEDGEMENT

 The author is indebted to J. A. Hartigan and the referee for their helpful suggestions.

 REFERENCES

 BANFIELD, C. F. and BASSILL, L. C. (1977). Algorithm AS 113. A transfer algorithm for non-hierarchical
 classification. Appl. Statist., 26, 206-210.

 BUSACKER, R. G. and SAATY, T. L. (1965). Finite Graphs and Networks: An Introduction with Applications.
 New York: McGraw-Hill.

 HARTIGAN, J. A. (1975). Clustering Algorithms. New York: Wiley.
 MACNAUGHTON-SMITH, P. (1965). Some Statistical and Other Numerical Techniques Jbr Classifying Indivi-

 duals. Home Office Res. Unit Rep., Publ. No. 6. London: HMSO.
 WILLIAMS, W. T. and LAMBERT, J. M. (1959). Multivariate methods in plant ecology. I. Association analysis

 in plant communities. J. Ecol., 47, 83-101.

This content downloaded from 178.250.250.21 on Sun, 26 Jun 2016 02:03:40 UTC
All use subject to http://about.jstor.org/terms

 210 APPLIED STATISTICS

 SUBROUTINE INITCX, N1 XLEN, NCLUS, MXCLUS, MXSIZE, ITYPE,
 * CLUS1 Y, SIZE# P, IOLD, INEW, IFAULT)

 c ALGORITHM AS 140.1 APPL, STATIST, C1979) VOL,28, NO,2
 C
 C CONSTRUCT AN INITIAL PARTITION OF THE NODES
 C

 INTEGER XLEN, FIRST, XCXLEN), Y(XLEN), CLUSCN)s SIZECMXCLUS)e
 * INtW(N), IOLD(N)
 REAL P(MXCLUS, MXCLUS)
 LOGICAL FLAG

 C
 C CHECK INPUTS
 C

 IFAULT a I
 IF (NCLUS *LE, I *QR, NCLUS ,GE, N *OR, NCLUS *GT* MXCLUS) RETURN
 IFAuLT a 2
 IF CNCLUS * MX3IZE .LE, N) RETURN
 IFAULT - 3
 DO I I ; 2, N
 L _ I a I
 IF CXCI) *LE, XCL)) RETURN

 I COMTINUE
 M _ N +

 IF CXt) ,NE, h ,OR, X(N) ,GT. XLEN) RETURN
 IFAULT - 4
 00 2 I - Mt XLEN
 IF CXCI) .LE, 0 ,OR, XCI) 4GT* N) RETURN

 2 CONTINUE
 IFAULT - 5
 00 b I _ t, N
 FIRST - XCl)

 LAST - X(L)
 IF (I ,EQ, N) LAST * XLfN
 IF (FIRST ,EQt LAST) GOTO 5
 JJLAST L LAST a 1
 DO 4 J FIRST, JLASI
 J7EST - XtJ)
 KFIHST 4 +
 DO 3 K KFIRST3 LAST
 IF (JTEST ere, XCK)) RETURN

 3 CONTINUE
 4 CONTINUE
 5 CUNTINUE

 c CONSTRUCT Y VECTOR, THE Y VECTOR HOLDS THE ASSOCIATION
 C MATRIX BY COLUMNS RATHER THAN BY ROWS AS X DOES,
 C

 DO 6 I 1, N
 INEW(I) u 0
 YCI) = N + 3

 6 CONTINUE
 ycr) - a
 DO 7 I 1 N
 FIRST ; XCI)
 LAST X(I + 1) a 1
 IF CZ ,CQ, N) LAST * XLrN
 00 7 J = FIRST# LAST
 KFIRST = XCJ) + 1
 DO 7 K = KFIR3T, N
 YCKI c Y(K) + 1

 7 CONTINUC
 DO 8 I 1. N
 FIRST XCI)
 LAST X(I + 1) w 1
 IF (I .EQ, N) LAST " XLEN
 DO 0 J FIRSTt LAST
 ITEMP XCJ)
 l = YCITEMP) + INEWCITEMP)
 YCL) I I
 INEwCITEMP) = INEW TEMP) + I

This content downloaded from 178.250.250.21 on Sun, 26 Jun 2016 02:03:40 UTC
All use subject to http://about.jstor.org/terms

 STATISTICAL ALGORITHMS 211

 * CONTINUE
 IFAULT 6
 DO 9 1 ; 2. N
 IF CYCI) *LE3 YCI a 1)) RETURN

 9 CONTINUE
 IF CY(C) *NE, M ,OR, Y(N) *GT, XLEN) RETURN
 IF (ITYPE , EQ,) GOTO 33
 IFAULT - 0

 C APPROXIMATE FIR3T EIGENVECTOR
 C

 DO 11 I I t, N
 1t IOU(I) I

 DO 13 ITER _ 1 *
 DO 12 I =1t N
 LAST XCI 4 1) 1
 IF (I ,CE, N) LAST XLEN
 DO 12 J = FIRST, LAST
 ITEMP XCJ)
 INEW(I) - INEWCI) + IOLDCITEMP)

 22 CONTINUE
 DO 13 I 3 I, N
 IOLLCI) - INEWCI)

 23 CONTINUE
 C
 C SORT BY FIRST ElGENVECTOR
 C

 DO 14 1 1, N
 14 INEW(I) - I

 DO 16 I - I, N
 FLAG -, TRUC,
 DO 15 J u 2, N
 L = J - I
 ITEMP 9 INEWCL)
 M = INEWtJ)
 IF CIOLD(M) ,GE, IOLDCITEMP)) GOTO 15
 FLAG - *FALSE,
 INEW(J) _ INEWCL)
 INEW(L) 1 1

 35 CONTINUE
 IF (FLAG) GOTO 17

 S6 CONTINUE
 C
 c PARTITION INTO INITIAL CLUSTERS
 C

 37 KSTART N I NCLUS
 DO 21 I 1, NCLuS

 21 SIZECI) KSTART
 ILAST: MODCN, NCLUS)
 IF (CLAST ,EQ, 0) GOTO 31
 DO 22 I -, ILAST

 22 SIZEMI) _SZECI) + 3
 33 4 c I

 DO 32 I 1. NCLUS
 KLAST -SIZEtS)
 DO 32 K -1, KLA3T
 ITEMP - INEWCJ)
 CLUS3ITEMP) * I
 : 4 +l

 32 CONTINUE
 GOTO 40

 33 DO 34 I 3 to NCLUS
 34 SIZEI) 0

 IPAWLT = 7
 DO 35 I = If N
 J = CLU3(I)
 IF tJ ,LE, 0 ,OR, J G,OT NCLUS) RETURN
 8IZECJ) = SIZE(J) + 1

 30 CONTINUE
 IFAULT _ J
 DO 36 I I f, NCLUS
 IF CSIZE(M) 1LE, 0 ,OR, 3IZECI) *GT, MXSIZE) RETURN

This content downloaded from 178.250.250.21 on Sun, 26 Jun 2016 02:03:40 UTC
All use subject to http://about.jstor.org/terms

 212 APPLIED STATISTICS

 36 CONTINUE
 IFAULT P 0

 C SET UP P MATRIX, SUCCESS COUNTS
 C

 40 DO 41 I 1 I, NCLUS
 DO 41 J : It NCLUS

 4i PCI, J) _ 0,0
 DO 42 I - It N
 fIRST u XCI)
 LAST * X(I + 1) ' I
 IF (I ,EQ, N) LAST = XLrN
 DO 42 J - FIRST? LAST
 IF CX(J) *EQ* I) GOTO 42
 ITEMP X(J)
 ITEmP CLUS(ITEMP)
 ITMMP2 CLUSCI)
 PCITEMP2t ITEMP) a P(ITrMP2, ITEMP) + 2,0

 42 CONTINUE
 RETURN
 END

 C
 SU8ROUTINE ALLOC(X, Yp No XLEN, NCLUS, MXCLUS, MXSIZE,

 * TH, MXS2, CLUS, SIZE, Pt Rlt R2, TLOG, IOLD, INEW)
 C
 C ALGORITHM A0 140,2 APPL, STATIST. (1979) VOL,28, N02

 c FROM AN INITIAL PARTITION OF THE NODES OF A GRAPH,
 C kEALLOCATE NODES TO CLUSTERS TO FIND A LOCALLY

 MAXIMUM LIKELIHOOD PARTITION
 C

 INTEGER XLEN, FIRSJ, XCXLEN), YCXLEN), CLljS(N),
 * SIZC(MXCLUS), IOLO(N), INEW(N)
 REAL P(MXCLUS, MXCLUS), TLOGCMXS2), RI(MXCLUS), R2CMXCLUS)
 LOOICAt GLO0AL

 C INITIALIZE TLOG, JNEW, IOLD, PASS,
 C

 00 I I - It MXS2
 1 TLOG(I) : FLOAT(I) * ALOO(FLOAT(I))
 2 DO J I -1 NCLUS

 INENWI) = 0
 IOLU(I) 1

 3 CONTINUE
 QL013AL =,TRUE,

 C
 C MOVE A NODE TO A NrW CLUSTER IF THE MOVE INCREASES
 C THE LIKELIHOOD,
 c ONLY CHECK MOVES IF ONE OF THE CLUSTERS HAS IOLD x 3.
 C

 4 DO 59 ITER x 1, N
 NBEST m CLUSCITER)
 TWST TH

 C SET UP ARRAY OF ASSUCIATIONS (R) FOR THIS NODE
 C

 DO 10 I : 1, NCLUS
 RCI) -0, 0
 R2C() = 0,0

 30 CONTINUE
 FIRST XMITER)
 1 ITER + 1
 LAST =X(L) * 1
 IF (ITER ,EQt N) LAST 8 XLEN
 DO it I - FIRST, LAST
 IF CXCI) *EQl ITER) GOTO 11
 ITEMP = XCI)
 ITEMP - CLUS(ITEMP)
 R1CITEMP) - RI1CtEMP) + log

 St CONTINUE
 FIRST YCITER)
 LAST Y(L.) a 1

This content downloaded from 178.250.250.21 on Sun, 26 Jun 2016 02:03:40 UTC
All use subject to http://about.jstor.org/terms

 STATISTICAL ALGORITHMS 213

 IF (ITER *EQ, N) LAST = XLEN
 Do 12 I = FIRST, LAST
 IF CYCI) ,EQ, ITER) GOTO 12
 ITEmP =Y(J)
 ITEmP CLUS CITEMP)
 R2(ITEMP) = R2(ITEMP) + 190

 12 CONTINUE
 C

 CHECK EACH CLUSTER FOR AN INCREASE IN LIKELIHOOD
 C

 L - CLUS(rITR)
 D0 49 M : 1, NCLUS
 IF (L $co M ,OR, SIZE(M) ,GE, MXSIZE ,OR1

 * IOLO(L) 4 IOLD(M) ,EO, 0) GOTO 49
 TEST 4 0,0

 DO ?2 J = 1, NCLUS
 IF (J ,CQ, L ,OR, J ,Er, H) GOTO 20
 IF (P(L, J) ,GT, 0,0) TEST P TEST + XLIKE(PCL, J), R1CtJ) SIZECL),

 * SIZECJ), SIZE(L) w 1, 8IZECJ), 1,0, TLOG, MXS2)
 IF (P(M, J) ,GT, 0,0 ,OR, RI(J) ,GT, 0,0) TEST w TEST +

 * XLIKECP(M, J), R1(J), SIZE(M), SIZE(J)p SIZECM) t 1, SIZE(J),
 * a3,9, TLOG, MXS2)
 IF (P(J, I) ,GT, 0,0) TEST a TEST + XLIKE(PCJ, L), R2(J)o SIZECL),

 * SIZE(J), SIZE(L) - 1, SIZE(J), t.0, TLOG, MXS2)
 IF (P(J, M) ,GT, 0,0 *OR, R2(J) ,GT, 0,0) TEST x TEST +

 * XLIKE(PC4, M), R2(J)p SIZE(H), SIZECJ), SIZEMH) + 1 SIZECJ),
 * .1,0, TLOG, MXS2)

 20 CONTINUE

 TEST a TEST + XLIKE(PCLt 0), R1CL) + R2(L) . STZECL) * 1. SIZE(L)p
 * SIZE(L) to SIZE(L) 2, 1,0, TLOGP MXS2) +
 * XLIKE(P(L, M), R1(h) R H2(L) t SIZE(L), SIZECM), SIZE(M) l 1,
 * SILC(M) + I, 10, TLOG, MX32) +
 * XLIKE(P(M, L), N2CM) w RI(L) , SIZE(L)., SIZE(C), SIZE(LI 1.
 * SIZE(M) + 1, *1,Oe TLOG, MXS2) +
 * XLIKE(P(M, M), Rl(M) + R2(M) , SIZECM) to1, SIZE4),
 * SIZE(M) + I, SIZE(M), 01,0, TLOG# MXS2)
 IF (TEST eLf, OTESI) GOTO 49
 BTEST a TEST
 NBEST P M

 49 CONTINUE
 C
 C MOVE TO BEST CLUSTrR
 C

 IF (NOEST ,EQ, L) G7TO 59
 M) a NBEST
 00 50 II -1 , NCLUS
 P(Le II) = P(L, II) s 01(CII)
 P(M, 11) P(M, II) + R1(II)
 P(Ilo L) P(IIp L) R 02(II)
 P(II, M) P(II, M) + R2(11)

 50 ctni1lNUE
 SIZL(tL) : SIZE(L) * 1
 SIZE (M) SIZE(m) + 1
 CLU3(ITER) a NBEST
 INEW(L): 1
 INEW (M) =

 69 CONTINUE

 C CHECK FOR OPTIMUM, WERr THERE ANY MOVES THIS PASS,
 C

 DO 60 I 1t NCLUS
 IF CINEW(I) ,GT, 0) COTO 62

 60 CONTINUE
 C
 C NO MOVES, IF A GLOBAL CHECK, FINTSH,
 C IF A LOCAL CHECK, MAKE A GLOBAL CHECK9
 C

 IF CGLOBAL) GOTO 70
 GOTO 0

 C
 C 3OmE MOVES, RESET IOLD, INEW, MAKE A LOCAL CHECK*

This content downloaded from 178.250.250.21 on Sun, 26 Jun 2016 02:03:40 UTC
All use subject to http://about.jstor.org/terms

 214 APPLIED STATISTICS

 6Z GLOBAL -FALSE,
 DO 603 IV NCLUS
 IULL)I) INEW(I)
 INEW(I) _ 0

 63 CONTINUL
 GOTU 4

 C
 C COMPUTE OVERALL LOG LIKELIHOOD

 70 RICS) - 0,0
)0 /2 I a I, NCLUS
 HICI) - RICI) + XLIKEC0.,0 PCI, I) It It SIZE() l

 * SIZECI), -1,0, TLOG, MXS2)
 DO 71 J q l, NCLUS
 IF Cl ,NE, J) RICI) a RICI) + XLIKE(0o0, PCI, J),

 * It I, SIZE(I)s 8IZLJ)* .1,0, TLOG, MX32)
 71 CONTINUE
 72 CONTINUE

 HE TU1HN

 REAL FUNCTION XLIKE(PI, RI, SI, 82, 83, 84, YI, TLOG, MXS2)
 C
 C ALGURITHM AS 140,3 APPL, STATIST. (1979) VOL,28, NO,2
 C
 C EVALUATE THE CHANGE IN LOG LIKELIHOOD BETWEEN P SUCCESSES IN
 C 81 * 82 TRIALS AND PI * YI * RI SUCCESSES IN 33 * 84 TRIALS9
 C

 INTEGCR Sl, 32, S3, 84, P, R, X, Z
 HEAL TLUG(MXS2)
 XL1I L 0,0
 P - PI
 Z _ Si * 32
 H: Z P

 IF (tN NE, l' ,AND, P ,NE, 0) XLIKE a TLOGCZ) * TLOGCP) * TLOGCR)
 X P - Yi * RI
 Z 53 * S4
 R _ Z X
 IF (it ,NE, 0 ,AND, X Nr, e)

 A XLIKL = XLIKC + ILQG(X) t TLOG(R) o TLOG(Z)
 RETURN
 END

 Algorithm AS 141

 Inversion of a Symmetric Matrix in Regression Models

 By PHILIPPE KENT

 Department of Mathematics, Ecole Polytechnique Federale, Lausanne, Switzerland

 LANGUAGE

 ISO Fortran

 INTRODUCTION

 In a regression model Y = Xb, b is estimated by (X'X)-1 X'Y. To obtain the regression
 without a particular variable and thence a partial F value for that variable, (W'W)-1 W'Y may
 be used where W is obtained from X by deleting the column in X corresponding to the variable.

 The Fortran subroutine SINV computes (W'W)-1 directly from (X'X)-1, achieving a
 significant gain in time compared to the inversion of (W'W). It is largely based on Algorithm

This content downloaded from 178.250.250.21 on Sun, 26 Jun 2016 02:03:40 UTC
All use subject to http://about.jstor.org/terms

	Contents
	p. 206
	p. 207
	p. 208
	p. 209
	p. 210
	p. 211
	p. 212
	p. 213
	p. 214

	Issue Table of Contents
	Applied Statistics, Vol. 28, No. 2 (1979) pp. 115-217+i-vi
	Front Matter [pp.]
	Editorial: Invitation to Potential Authors of "Case Study" Papers [pp.]
	Detecting Relationships Between Categorical Variables Observed Over Time: A Problem of Deflating a Chi-Squared Statistic [pp. 115-125]
	A Non-Parametric Approach to the Change-Point Problem [pp. 126-135]
	An Application of Cox's Proportional Hazard Model to Multiple Infection Data [pp. 136-143]
	The Comparison of Treatment with Control Group Means in Toxicological Studies [pp. 144-151]
	Efficient Simulation of the von Mises Distribution [pp. 152-157]
	Approximate Percentage Points for the Distribution of a Product of Independent Positive Random Variables [pp. 158-162]
	A Comment on Replicated Paired Comparisons [pp. 163-169]
	Generating Uniform Polygonal Random Pairs [pp. 170-172]
	Miscellanea
	Statistical Tests with Hand-Calculator Standard Deviations [pp. 173-174]
	Approximations to the Inverse Cumulative Normal Function for Use on Hand Calculators [pp. 175-176]

	Book Reviews
	Review: untitled [pp. 177]
	Review: untitled [pp. 177-178]
	Review: untitled [pp. 178-179]
	Review: untitled [pp. 179-180]
	Review: untitled [pp. 180-181]
	Review: untitled [pp. 181]
	Review: untitled [pp. 181-182]
	Review: untitled [pp. 182-183]
	Review: untitled [pp. 183]

	Letter to the Editors [pp. 184]
	Statistical Algorithms
	Algorithm AS 138: Maximum Likelihood Estimation from Confined and Censored Normal Data [pp. 185-195]
	Algorithm AS 139: Maximum Likelihood Estimation in a Linear Model from Confined and Censored Normal Data [pp. 195-206]
	Algorithm AS 140: Clustering the Nodes of a Directed Graph [pp. 206-214]
	Algorithm AS 141: Inversion of a Symmetric Matrix in Regression Models [pp. 214-217]

	Back Matter [pp.]

